By Topic

PACK: Prediction-Based Cloud Bandwidth and Cost Reduction System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zohar, E. ; Dept. of Electr. Eng., Technion - Israel Inst. of Technol., Haifa, Israel ; Cidon, I. ; Mokryn, O.

In this paper, we present PACK (Predictive ACKs), a novel end-to-end traffic redundancy elimination (TRE) system, designed for cloud computing customers. Cloud-based TRE needs to apply a judicious use of cloud resources so that the bandwidth cost reduction combined with the additional cost of TRE computation and storage would be optimized. PACK's main advantage is its capability of offloading the cloud-server TRE effort to end-clients, thus minimizing the processing costs induced by the TRE algorithm. Unlike previous solutions, PACK does not require the server to continuously maintain clients' status. This makes PACK very suitable for pervasive computation environments that combine client mobility and server migration to maintain cloud elasticity. PACK is based on a novel TRE technique, which allows the client to use newly received chunks to identify previously received chunk chains, which in turn can be used as reliable predictors to future transmitted chunks. We present a fully functional PACK implementation, transparent to all TCP-based applications and network devices. Finally, we analyze PACK benefits for cloud users, using traffic traces from various sources.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:22 ,  Issue: 1 )