By Topic

Performance Modeling to Support Multi-tier Application Deployment to Infrastructure-as-a-Service Clouds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Lloyd, W. ; Dept. of Comput. Sci., Colorado State Univ., Fort Collins, CO, USA ; Pallickara, S. ; David, O. ; Lyon, J.
more authors

Infrastructure-as-a-service (IaaS) clouds support migration of multi-tier applications through virtualization of diverse application stack(s) of components which may require various operating systems and environments. To maximize performance of applications deployed to IaaS clouds while minimizing deployment costs, it is necessary to create virtual machine images to host application components with consideration for component dependencies that may affect load balancing of physical resources of VM hosts including CPU time, disk and network bandwidth. This paper presents results of an investigation utilizing physical machine (PM) and virtual machine (VM) resource utilization statistics to build performance models to predict application performance and rank performance of application component deployment configurations deployed across VMs. Our objective was to predict which component compositions provide best performance while requiring the fewest number of VMs. Eighteen individual resource utilization statistics were investigated for use as independent variables to predict service execution time using four different modeling approaches. Overall CPU time was the strongest predictor of execution time. The strength of individual predictors varied with respect to the resource utilization profiles of the applications. CPU statistics including idle time and number of context switches were good predictors when the test application was more disk I/O bound, while disk I/O statistics were better predictors when the application was more CPU bound. All performance models built were effective at determining the best performing service composition deployments validating the utility of our approach.

Published in:

Utility and Cloud Computing (UCC), 2012 IEEE Fifth International Conference on

Date of Conference:

5-8 Nov. 2012