By Topic

Designing High-Quality Embedded Control Systems with Guaranteed Stability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Amir Aminifar ; Dept. of Comput. & Inf. Sci., Linkoping Univ., Linkoping, Sweden ; Soheil Samii ; Petru Eles ; Zebo Peng
more authors

Many embedded systems comprise several controllers sharing available resources. It is well known that such resource sharing leads to complex timing behavior that degrades the quality of control, and more importantly, can jeopardize stability in the worst-case, if not properly taken into account during design. Although stability of the control applications is absolutely essential, a design flow driven by the worst-case scenario often leads to poor control quality due to the significant amount of pessimism involved and the fact that the worst-case scenario occurs very rarely. On the other hand, designing the system merely based on control quality, determined by the expected (average-case) behavior, does not guarantee the stability of control applications in the worst-case. Therefore, both control quality and worst-case stability have to be considered during the design process, i.e., period assignment, task scheduling, and control-synthesis. In this paper, we present an integrated approach for designing high-quality embedded control systems, while guaranteeing their stability.

Published in:

Real-Time Systems Symposium (RTSS), 2012 IEEE 33rd

Date of Conference:

4-7 Dec. 2012