By Topic

Discriminative Multiple Canonical Correlation Analysis for Multi-feature Information Fusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lei Gao ; Sch. of Inf. Eng., Zhengzhou Univ., Zhengzhou, China ; Lin Qi ; Enqing Chen ; Ling Guan

This paper presents a novel approach for multi-feature information fusion. The proposed method is based on the Discriminative Multiple Canonical Correlation Analysis (DMCCA), which can extract more discriminative characteristics for recognition from multi-feature information representation. It represents the different patterns among multiple subsets of features identified by minimizing the Frobenius norm. We will demonstrate that the Canonical Correlation Analysis (CCA), the Multiple Canonical Correlation Analysis (MCCA), and the Discriminative Canonical Correlation Analysis (DCCA) are special cases of the DMCCA. The effectiveness of the DMCCA is demonstrated through experimentation in speaker recognition and speech-based emotion recognition. Experimental results show that the proposed approach outperforms the traditional methods of serial fusion, CCA, MCCA and DCCA.

Published in:

Multimedia (ISM), 2012 IEEE International Symposium on

Date of Conference:

10-12 Dec. 2012