By Topic

Combined Human, Antenna Orientation in Elevation Direction and Ground Effect on RSSI in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ahmed, S.H. ; Dept. of Electr. Eng., Comsats Inst. of Inf. Technol., Islamabad, Pakistan ; Bouk, S.H. ; Javaid, N. ; Sasase, I.

In this paper, we experimentally investigate the combined effect of human, antenna orientation in elevation direction and the ground effect on the Received Signal Strength Indicator (RSSI) parameter in the Wireless Sensor Network (WSN). In experiment, we use MICAz motes and consider different scenarios where antenna of the transmitter node is tilted in elevation direction. The motes were placed on the ground to take into account the ground effect on the RSSI. The effect of one, two and four persons on the RSSI is recorded. For one and two persons, different walking paces e.g. slow, medium and fast pace, are analysed. However, in case of four persons, random movement is carried out between the pair of motes. The experimental results show that some antenna orientation angles have drastic effect on the RSSI, even without any human activity. The fluctuation count and range of RSSI in different scenarios with same walking pace are completely different. Therefore, an efficient human activity algorithm is need that effectively takes into count the antenna elevation and other parameters to accurately detect the human activity in the WSN deployment region.

Published in:

Frontiers of Information Technology (FIT), 2012 10th International Conference on

Date of Conference:

17-19 Dec. 2012