Cart (Loading....) | Create Account
Close category search window
 

Acoustic modeling for under-resourced languages based on vectorial HMM-states representation using Subspace Gaussian Mixture Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Bouallegue, M. ; LIA, Univ. of Avignon, Avignon, France ; Ferreira, E. ; Matrouf, D. ; Linares, G.
more authors

This paper explores a novel method for context-dependent models in automatic speech recognition (ASR), in the context of under-resourced languages. We present a simple way to realize a tying states approach, based on a new vectorial representation of the HMM states. This vectorial representation is considered as a vector of a low number of parameters obtained by the Subspace Gaussian Mixture Models paradigm (SGMM). The proposed method does not require phonetic knowledge or a large amount of data, which represent the major problems of acoustic modeling for under-resourced languages. This paper shows how this representation can be obtained and used for tying states. Our experiments, applied on Vietnamese, show that this approach achieves a stable gain compared to the classical approach which is based on decision trees. Furthermore, this method appears to be portable to other languages, as shown in the preliminary study conducted on Berber.

Published in:

Spoken Language Technology Workshop (SLT), 2012 IEEE

Date of Conference:

2-5 Dec. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.