By Topic

Exploiting the Semantic Web for unsupervised spoken language understanding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Larry Heck ; Microsoft Research ; Dilek Hakkani-Tür

This paper proposes an unsupervised training approach for SLU systems that leverages the structured semantic knowledge graphs of the emerging Semantic Web. The approach creates natural language surface forms of entity-relation-entity portions of knowledge graphs using a combination of web search retrieval and syntax-based dependency parsing. The new forms are used to train an SLU system in an unsupervised manner. This paper tests the approach on the problem of intent detection, and shows that the unsupervised training procedure matches the performance of supervised training over operating points important for commercial applications.

Published in:

Spoken Language Technology Workshop (SLT), 2012 IEEE

Date of Conference:

2-5 Dec. 2012