By Topic

A Framework for the Integrated Optimization of Charging and Power Management in Plug-in Hybrid Electric Vehicles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Patil, R.M. ; Dept. of Mech. Eng., Univ. of Michigan, Ann Arbor, MI, USA ; Kelly, J.C. ; Filipi, Z. ; Fathy, H.K.

This paper develops a dynamic programming (DP)-based framework for simultaneously optimizing the charging and power management of a plug-in hybrid electric vehicle (PHEV). These two optimal control problems relate to activities of the PHEV on the electric grid (i.e., charging) and on the road (i.e., power management). The proposed framework solves these two problems simultaneously to avoid loss of optimality resulting from solving them separately. The framework furnishes optimal trajectories of PHEV states and control inputs over a 24-h period. We demonstrate the framework for 24-h scenarios with two driving trips and different power grid generation mixes. The results show that addressing the aforementioned optimization problems simultaneously can elucidate valuable insights. For example, for the chosen daily driving scenario, grid generation mixes, and optimization objective, it is shown that it is not always optimal to completely charge a battery before each driving trip. In addition, reduction in CO2 resulting from the synergistic interaction of PHEVs with an electric grid containing a significant amount of wind power is studied. The main contribution of this paper to the literature is a framework that makes it possible to evaluate tradeoffs between charging and on-road power management decisions.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:62 ,  Issue: 6 )