By Topic

Hybrid Noncoherent Network Coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Skachek, V. ; Coordinated Sci. Lab., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA ; Milenkovic, O. ; Nedic, A.

We describe a novel extension of subspace codes for noncoherent networks, suitable for use when the network is viewed as a communication system that introduces both dimension and symbol errors. We show that when symbol erasures occur in a significantly large number of different basis vectors transmitted through the network and when the min-cut of the network is much smaller than the length of the transmitted codewords, the new family of codes outperforms their subspace code counterparts. For the proposed coding scheme, termed hybrid network coding, we derive two upper bounds on the size of the codes. These bounds represent a variation of the Singleton and of the sphere-packing bound. We show that a simple concatenated scheme that consists of subspace codes and Reed-Solomon codes is asymptotically optimal with respect to the Singleton bound. Finally, we describe two efficient decoding algorithms for concatenated subspace codes that in certain cases have smaller complexity than their subspace decoder counterparts.

Published in:

Information Theory, IEEE Transactions on  (Volume:59 ,  Issue: 6 )