Cart (Loading....) | Create Account
Close category search window
 

Prediction Intervals for Short-Term Wind Farm Power Generation Forecasts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Khosravi, A. ; Centre for Intell. Syst. Res. (CISR), Deakin Univ., Geelong, VIC, Australia ; Nahavandi, S. ; Creighton, D.

Quantification of uncertainties associated with wind power generation forecasts is essential for optimal management of wind farms and their successful integration into power systems. This paper investigates two neural network-based methods for direct and rapid construction of prediction intervals (PIs) for short-term forecasting of power generation in wind farms. The lower upper bound estimation and bootstrap methods are used to quantify uncertainties associated with forecasts. The effectiveness and efficiency of these two general methods for uncertainty quantification is examined using twenty four month data from a wind farm in Australia. PIs with a confidence level of 90% are constructed for four forecasting horizons: five, ten, fifteen, and thirty minutes. Quantitative measures are applied for objective evaluation and unbiased comparison of PI quality. Demonstrated results indicate that reliable PIs can be constructed in a short time without resorting to complicate computational methods or models. Also quantitative comparison reveals that bootstrap PIs are more suitable for short prediction horizon, and lower upper bound estimation PIs are more appropriate for longer forecasting horizons.

Published in:

Sustainable Energy, IEEE Transactions on  (Volume:4 ,  Issue: 3 )

Date of Publication:

July 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.