By Topic

Utilization of Optimal Control Law to Size Grid-Level Flywheel Energy Storage

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Hearn, C.S. ; Center for Electromech., Univ. of Texas at Austin, Austin, TX, USA ; Lewis, M.C. ; Pratap, S.B. ; Hebner, R.E.
more authors

This paper presents a method for sizing grid-level flywheel energy storage systems using optimal control. This method allows the loss dynamics of the flywheel system to be incorporated into the sizing procedure, and allows data-driven trade studies to be performed which trade peak grid power requirements and flywheel storage capacity. A demonstration of the sizing methodology will be illustrated through a case study based on home consumption and solar generation data collected from the largest smart grid in Austin, Texas, USA.

Published in:

Sustainable Energy, IEEE Transactions on  (Volume:4 ,  Issue: 3 )