By Topic

Electrical Tunable Microstrip LC Bandpass Filters With Constant Bandwidth

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Qianyin Xiang ; School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China ; Quanyuan Feng ; Xiaoguo Huang ; Dinghong Jia

In this paper, two- and three-pole microstrip LC constant fractional bandwidth (CFBW) and constant absolute bandwidth (CABW) tunable bandpass filters are proposed. The equivalent-circuit models are presented to study the tunable mechanism. The filter can be reconfigured by changing the capacitance of the LC resonators. Based on electric coupling coefficient compensation, second- and third-order tunable equivalent-circuit models with CFBW/CABW are presented. For demonstration, a semiconductor varactor diode loaded microstrip LC resonator is adopted in our work to design the second- and third-order tunable filters. The S-parameters, group delays, and third-order intercept points for different center frequencies of the filters are presented. Each resonator requires only one varactor diode for both central frequency and resonator coupling coefficient control.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:61 ,  Issue: 3 )