By Topic

An Empirical Model for RRAM Resistance in Low- and High-Resistance States

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Puglisi, F.M. ; Dipt. di Ing. Enzo Ferrari, Univ. degli Studi di Modena e Reggio Emilia, Modena, Italy ; Larcher, L. ; Bersuker, G. ; Padovani, A.
more authors

We present a simple empirical expression describing hafnium-based RRAM resistance at different reset voltages and current compliances. The model that we propose describes filament resistance measured at low ( ~ 0.1 V) reading voltage in both low-resistance state (LRS) and high-resistance state (HRS). The proposed description confirms that conduction in LRS is ohmic (after forming with a sufficiently high current compliance) and is consistent with the earlier description of HRS resistance as controlled by a trap-assisted electron transfer via traps in the oxidized portion of the filament. The length of the nonohmic part of the filament is found to be directly proportional to reset voltage. Moreover, low-frequency noise measurements at different reset voltages evidence a tradeoff between HRS resistance and noise in reading conditions.

Published in:

Electron Device Letters, IEEE  (Volume:34 ,  Issue: 3 )