Cart (Loading....) | Create Account
Close category search window

Generation-dependent charge carrier transport in Cu(In,Ga)Se2/CdS/ZnO thin-film solar-cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Nichterwitz, Melanie ; Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany ; Caballero, Raquel ; Kaufmann, Christian A. ; Schock, Hans-Werner
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Cross section electron-beam induced current (EBIC) and illumination-dependent current voltage (IV) measurements show that charge carrier transport in Cu(In,Ga)Se2 (CIGSe)/CdS/ZnO solar-cells is generation-dependent. We perform a detailed analysis of CIGSe solar cells with different CdS layer thicknesses and varying Ga-content in the absorber layer. In conjunction with numerical simulations, EBIC and IV data are used to develop a consistent model for charge and defect distributions with a focus on the heterojunction region. The best model to explain our experimental data is based on a p+ layer at the CIGSe/CdS interface leading to generation-dependent transport in EBIC at room temperature. Acceptor-type defect states at the CdS/ZnO interface cause a significant reduction of the photocurrent in the red-light illuminated IV characteristics at low temperatures (red kink effect). Shallow donor-type defect states at the p+ layer/CdS interface of some grains of the absorber layer are responsible for grain specific, i.e., spatially inhomogeneous, charge carrier transport observed in EBIC.

Published in:

Journal of Applied Physics  (Volume:113 ,  Issue: 4 )

Date of Publication:

Jan 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.