By Topic

Inference in wireless sensor networks based on information structure optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wei Zhao ; Department of Computer and Information Science, Indiana University Purdue University Indianapolis, 46202 USA ; Yao Liang

Distributed in-network inference plays a significant role in large-scale wireless sensor networks (WSNs) in applications for distributed detection and estimation. Belief propagation (BP) holds great potential for forming an essential and powerful underlying mechanism for such distributed inferences in WSNs. However, it has been recognized that many challenges exist in the context of WSN distributed inference. One such challenge is how to systematically develop a graphical model of WSN, upon which BP-based distributed inference can be effectively and efficiently performed, rather than ad hoc. This paper investigates this challenge and proposes a general and rigorous data-driven approach to building a solid and practical graphical model of WSN, given prior observations, based on graphical model optimization. The proposed approach is empirically evaluated using real-world sensor network data. We show that our approach can significantly reduce the energy consumption in BP-based distributed inference in WSNs and also improve the inference accuracy, when compared to the current practice of distributed inference in WSNs.

Published in:

Local Computer Networks (LCN), 2012 IEEE 37th Conference on

Date of Conference:

22-25 Oct. 2012