By Topic

Network capabilities of cloud services for a real time scientific application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Krishnappa, D.K. ; Univ. of Massachusetts Amherst, Amherst, MA, USA ; Lyons, E. ; Irwin, D. ; Zink, M.

Dedicating high-end servers for executing scientific applications that run intermittently, such as severe weather detection or generalized weather forecasting, wastes resources. While the Infrastructure-as-a-Service (IaaS) model used by today's cloud platforms is well-suited for the bursty computational demands of these applications, it is unclear if the network capabilities of today's cloud platforms are sufficient. In this paper, we analyze the networking capabilities of multiple commercial (Amazon's EC2 and Rackspace) and research (GENICloud and ExoGENI cloud) platforms in the context of a Nowcasting application, a forecasting algorithm for highly accurate, near-term, e.g., 5-20 minutes, weather predictions. The application has both computational and network requirements. While it executes rarely, whenever severe weather approaches, it benefits from an IaaS model; However, since its results are time-critical, enough bandwidth must be available to transmit radar data to cloud platforms before it becomes stale. We conduct network capacity measurements between radar sites and cloud platforms throughout the country. Our results indicate that ExoGENI cloud performs the best for both serial and parallel data transfer with an average throughput of 110.22 Mbps and 17.2 Mbps, respectively. We also found that the cloud services perform better in the distributed data transfer case, where a subset of nodes transmit data in parallel to a cloud instance. Ultimately, we conclude that commercial and research clouds are capable of providing sufficient bandwidth for our real-time Nowcasting application.

Published in:

Local Computer Networks (LCN), 2012 IEEE 37th Conference on

Date of Conference:

22-25 Oct. 2012