By Topic

LPS and LRF: Efficient buffer management policies for Delay and Disruption Tolerant Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Juliano Fischer Naves ; Laborat ório MídiaCom, PGC-TCC, Instituto de Computaçõo - Universidade Federal Fluminense, Niter ói, Rio de Janeiro, Brazil ; Igor Monteiro Moraes ; Celio Albuquerque

In Delay and Disruption Tolerant Networks (DTNs), the message delivery rate is impacted by the buffer management policy adopted by nodes once buffer overflows occur frequently. This paper proposes two new buffer management policies. The first one, called LPS (Less Probable Sprayed), uses the messages delivery probability and estimates the number of replicas already disseminated to decide which message to drop. The second one, named LRF (Least Recently Forwarded), drops the least recently forwarded message based on the assumption that messages not forwarded over a certain period of time have already reached several next hops. These two policies are implemented and compared with existing proposals found in the literature. The analysis considers traces of three real networks in which LPS and LRF policies provide higher delivery rates up to 75% and 37%, respectively, than the rate provided by the second best policy, with less overhead.

Published in:

Local Computer Networks (LCN), 2012 IEEE 37th Conference on

Date of Conference:

22-25 Oct. 2012