By Topic

A novel dynamic Q-learning-based scheduler technique for LTE-advanced technologies using neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sorin Comsa, I. ; Inst. for Res. in Applicable Comput., Univ. of Bedfordshire, Luton, UK ; Sijing Zhang ; Aydin, M. ; Kuonen, P.
more authors

The tradeoff concept between system capacity and user fairness attracts a big interest in LTE-Advanced resource allocation strategies. By using static threshold values for throughput or fairness, regardless the network conditions, makes the scheduler to be inflexible when different tradeoff levels are required by the system. This paper proposes a novel dynamic neural Q-learning-based scheduling technique that achieves a flexible throughput-fairness tradeoff by offering optimal solutions according to the Channel Quality Indicator (CQI) for different classes of users. The Q-learning algorithm is used to adopt different policies of scheduling rules, at each Transmission Time Interval (TTI). The novel scheduling technique makes use of neural networks in order to estimate proper scheduling rules for different states which have not been explored yet. Simulation results indicate that the novel proposed method outperforms the existing scheduling techniques by maximizing the system throughput when different levels of fairness are required. Moreover, the system achieves a desired throughput-fairness tradeoff and an overall satisfaction for different classes of users.

Published in:

Local Computer Networks (LCN), 2012 IEEE 37th Conference on

Date of Conference:

22-25 Oct. 2012