By Topic

Achieving end-to-end goals of WSN using Weighted Cognitive Maps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
El Mougy, A. ; Dept. of Electr. & Comput. Eng., Queen's Univ., Kingston, ON, Canada ; Ibnkahla, M.

In this paper, a novel cognitive engine for Wireless Sensor Networks (WSN) is proposed in order to achieve its end-to-end goals. This engine is designed using the tool known as Weighted Cognitive Maps (WCM). WCMs have the advantage of being able to consider multiple conflicting objectives and constraints with low complexity. Their inference properties also allow them to resolve complex network interactions using simple mathematical operations. Methods for designing the WCM system are illustrated. The performance of the proposed system is evaluated using computer simulations. Simulation results show that the WCM system outperforms its existing counterparts in metrics of network lifetime, throughput, and PLR.

Published in:

Local Computer Networks (LCN), 2012 IEEE 37th Conference on

Date of Conference:

22-25 Oct. 2012