By Topic

Time series matrix factorization prediction of internet traffic matrices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yunlong Song ; Institute of Computing Technology, Chinese Academy of Sciences, Graduate University of Chinese Academy of Sciences, Beijing 100190, China ; Min Liu ; Shaojie Tang ; Xufei Mao

Traffic matrices (TMs) are very important for traffic engineering and if they can be predicted, the network operations can be made beforehand. However, existing prediction methods are neither accurate nor efficient in practice. In this paper, we utilize the spatio-temporal property and low rank nature to directly predict the total TMs. The problem is that conventional matrix interpolation only works well when elements are missing uniformly and randomly. But in the case of TMs prediction, an entire part of the matrix is unknown. To solve this problem, we utilize some essential properties of TMs and add the time series forecasting into the matrix interpolation. We analyze our algorithm and evaluate its performance. The experiment result shows that our method can predict TMs under an NMAE of 30% in most cases, even predicting all the elements of next 3 weeks.

Published in:

Local Computer Networks (LCN), 2012 IEEE 37th Conference on

Date of Conference:

22-25 Oct. 2012