By Topic

A feature-transform based approach to unsupervised task adaptation and personalization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jian Xu ; Dept. of Autom., Univ. of Sci. & Technol. of China, Hefei, China ; Zhi-Jie Yan ; Qiang Huo

This paper presents a feature-transform based approach to unsupervised task adaptation and personalization for speech recognition. Given task-specific speech data collected from a deployed service, an “acoustic sniffing” module is built first by using a so-called i-vector technique with a number of acoustic conditions identified via i-vector clustering. Unsupervised maximum likelihood training is then performed to estimate a task-dependent feature transform for each acoustic condition, while pre-trained HMM parameters of acoustic models are kept unchanged. Given an unknown utterance, an appropriate feature transform is selected via “acoustic sniffing”, which is used to transform the feature vectors of the unknown utterance for decoding. The effectiveness of the proposed method is confirmed in a task adaptation scenario from a conversational telephone speech transcription task to a short message dictation task. The same method is expected to work for personalization as well.

Published in:

Chinese Spoken Language Processing (ISCSLP), 2012 8th International Symposium on

Date of Conference:

5-8 Dec. 2012