By Topic

Complete Modeling of Large Via Constellations in Multilayer Printed Circuit Boards

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Muller, S. ; Inst. fur Theor. Elektrotechnik, Tech. Univ. Hamburg-Harburg (TUHH), Hamburg, Germany ; Happ, F. ; Xiaomin Duan ; Rimolo-Donadio, R.
more authors

This paper presents, for the first time, the comprehensive modeling of complete via constellations consisting of several thousands of vias in multilayer printed circuit boards using the physics-based approach. For each computational step of the physics-based approach, several alternatives are analyzed with regard to their computational efficiency, and calculation times are discussed as a function of the number of simulated vias. The results of this analysis are used in combination with previous studies to determine an efficient yet accurate algorithm for the simulation of large numbers of vias. The impact of the stackup configuration on the computational effort of the algorithm is analyzed, and the most computationally expensive parts of the calculation process are identified. A parallelization of the algorithms is carried out to accelerate the critical calculation tasks. As an evaluation example, simulation results for a via array consisting of 10 000 vias and eight cavities are shown. With the proposed simulation methods, the computation time for this via array is about 6.5 h per frequency point on a single CPU and about 40 min per frequency point with the parallel version running on 16 CPUs.

Published in:

Components, Packaging and Manufacturing Technology, IEEE Transactions on  (Volume:3 ,  Issue: 3 )