Cart (Loading....) | Create Account
Close category search window
 

Aerosol Transport and Source Attribution Using Sunphotometers, Models and In-Situ Chemical Composition Measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Vladutescu, D.V. ; Electr. & Telecommun. Eng. Technol. Dept., City Univ. of New York, New York, NY, USA ; Madhavan, B.L. ; Gross, B.M. ; Zhang, Q.
more authors

Understanding of chemical, physical, and radiative processes-emissions, transport, deposition, and modification of aerosol optical properties due to ageing-is of major importance to global and regional climate simulations and projections as well as health impairment. This paper presents aerosol optical properties retrieved with the Multifilter Rotating Shadowband Radiometers (MFRSRs) and the source attribution based on back trajectories and in situ aerosol chemical composition analysis obtained during the Aerosol Life Cycle Intensive Observational Period at Brookhaven National Laboratory on Long Island, NY, during July and August 2011. The aerosol optical properties retrieved with the MFRSR exhibit excellent agreement with those obtained with a colocated Cimel sunphotometer. Apportioning aerosol optical depths by size modes reveals several episodes of high loading of fine aerosol (diameter less than 2.5 μm). Analysis of optical and physical properties of aerosols as well as their chemical composition obtained by an in situ high-resolution time-of-flight aerosol mass spectrometer together with back trajectories indicates that the principal source of high concentrations of fine aerosols observed during July 18-24 was forest fires in western Canada, consistent with reports by the Canadian Forest Service and satellite observations by the Moderate Resolution Imaging Spectroradiometer (MODIS).

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:51 ,  Issue: 7 )

Date of Publication:

July 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.