By Topic

Generalized Epidemic Mean-Field Model for Spreading Processes Over Multilayer Complex Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sahneh, F.D. ; Electr. & Comput. Eng. Dept., Kansas State Univ., Manhattan, KS, USA ; Scoglio, C. ; Van Mieghem, P.

Mean-field deterministic epidemic models have been successful in uncovering several important dynamic properties of stochastic epidemic spreading processes over complex networks. In particular, individual-based epidemic models isolate the impact of the network topology on spreading dynamics. In this paper, the existing models are generalized to develop a class of models that includes the spreading process in multilayer complex networks. We provide a detailed description of the stochastic process at the agent level where the agents interact through different layers, each represented by a graph. The set of differential equations that describes the time evolution of the state occupancy probabilities has an exponentially growing state-space size in terms of the number of the agents. Based on a mean-field type approximation, we developed a set of nonlinear differential equations that has linearly growing state-space size. We find that the latter system, referred to as the generalized epidemic mean-field (GEMF) model, has a simple structure characterized by the elements of the adjacency matrices of the network layers and the Laplacian matrices of the transition rate graphs. Finally, we present several examples of epidemic models, including spreading of virus and information in computer networks and spreading of multiple pathogens in a host population .

Published in:

Networking, IEEE/ACM Transactions on  (Volume:21 ,  Issue: 5 )