Cart (Loading....) | Create Account
Close category search window
 

A New RNS based DA Approach for Inner Product Computation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chan Hua Vun ; Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Premkumar, A.B. ; Wei Zhang

This paper presents a novel method to perform inner product computation based on the distributed arithmetic principles. The input data are represented in the residue domain and are encoded using the thermometer code format while the output data are encoded in the one-hot code format. Compared to the conventional distributed arithmetic based system using binary coded format to represent the residues, the proposed system using the thermometer code encoded residues provides a simple means to perform the modular inner products computation due to the absence of the 2 modulo operation encountered in conventional binary code encoded system. In addition, the modulo adder used in the proposed system can be implemented using simple shifter based circuit utilizing one-hot code format. As there is no carry propagation involved in the addition using one-hot code, while the modulo operation can be performed automatically during the addition process, the operating speed of the one-hot code based modulo adder is much superior compared to the conventional binary code based modulo adder. As inner product is used extensively in FIR filter design, SPICE simulation results for an FIR filter implemented using the proposed system is also presented to demonstrate the validity of the proposed scheme.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:60 ,  Issue: 8 )

Date of Publication:

Aug. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.