By Topic

Sparse Hyperspectral Unmixing Based on Constrained lp - l2 Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fen Chen ; Sch. of Resources & Environ., Univ. of Electron. Sci. & Technol. of China, Chengdu, China ; Yan Zhang

Linear spectral unmixing is an effective technique to estimate the abundances of materials present in each hyperspectral image pixel. Recently, sparse-regression-based unmixing approaches have been proposed to tackle this problem. Mostly, l1 norm minimization is used to approximate the l0 norm minimization problem in terms of computational complexity. In this letter, we model the hyperspectral unmixing as a constrained sparse lp - l2(0 <; p <; 1) optimization problem and propose to solve it via the iteratively reweighted least squares algorithm. Experimental results on a series of simulated data sets and a real hyperspectral image demonstrate that the proposed method can achieve performance improvement over the state-of-the-art l1 - l2 method.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:10 ,  Issue: 5 )