By Topic

Low-Power CMOS Smart Temperature Sensor With a Batch-Calibrated Inaccuracy of {\pm}{0.25}^{\circ}{\rm C}~({\pm}3\sigma ) From {-}{70}^{\circ}{\rm C} to 130 ^{\circ}{\rm C}

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
AndrĂ© L. Aita ; Department of Electronics and Computing, Federal University of Santa Maria, Santa Maria, Brazil ; Michiel A. P. Pertijs ; Kofi A. A. Makinwa ; Johan H. Huijsing
more authors

In this paper, a low-power CMOS smart temperature sensor is presented. The temperature information extracted using substrate PNP transistors is digitized with a resolution of 0.03°C using a precision switched-capacitor (SC) incremental ΔΣ A/D converter. After batch calibration, an inaccuracy of ±0.25°C (±3) from -70°C to 130°C is obtained. This represents a two-fold improvement compared to the state-of-the-art. After individual calibration at room temperature, an inaccuracy better than ±0.1°C over the military temperature range is obtained, which is in-line with the state-of-the-art. This performance is achieved at a power consumption of 65 μW during a measurement time of 100 ms, by optimizing the power/inaccuracy tradeoffs, and by employing a clock frequency proportional to absolute temperature. The latter ensures accurate settling of the SC input stage at low temperatures, and reduces the effects of leakage currents at high temperatures.

Published in:

IEEE Sensors Journal  (Volume:13 ,  Issue: 5 )