Cart (Loading....) | Create Account
Close category search window
 

Interfacial study and energy-band alignment of annealed Al2O3 films prepared by atomic layer deposition on 4H-SiC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
Zhang, Feng ; Key Laboratory of Semiconductor Material Sciences, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China ; Sun, Guosheng ; Zheng, Liu ; Liu, Shengbei
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.4789380 

Al2O3 films were prepared by atomic layer deposition using trimethylaluminum and H2O at 250 °C on 4H-SiC substrates and annealed at 1000 °C in N2. The as-deposited and annealed Al2O3 films were measured and analyzed near the Al2O3/SiC interfaces by using an X-ray photoelectron spectroscopy (XPS) with etching processing. The XPS results showed that as-deposited Al2O3 films were O-rich and converted to anhydride Al2O3 films after annealed at 1000 °C in N2. Si suboxides were found both at as-deposited and annealed Al2O3/SiC interfaces. Energy band shift between Al2O3 and 4H-SiC was found after annealing. The conduction band offsets of as-grown and annealed Al2O3/SiC were 1.90 and 1.53 eV, respectively. These results demonstrated that Al2O3 can be a good candidate to be applied in SiC metal-oxide-semiconductor devices.

Published in:

Journal of Applied Physics  (Volume:113 ,  Issue: 4 )

Date of Publication:

Jan 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.