Cart (Loading....) | Create Account
Close category search window
 

Impedance-based simulation model of Carbon Nano-Onions ultracapacitors for e-bike with compact energy storage system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Parigi, F. ; Dept. of Electr. Eng., Univ. of Nebraska-Lincoln, Lincoln, NE, USA ; Gao, Y. ; Gachovska, T. ; Hudgins, J.L.
more authors

A novel electrified bicycle using only ultracapacitors as the primary energy storage components are described. A specific buck converter to charge the e-bike in less than two minutes has been designed and simulated. The simulation of the associated fast-charging system shows that this technology is feasible for the intended application. Novel ultracapacitors, made from Carbon Nano-Onion materials, have been produced and the impedance spectra were measured. The data were fitted to an equivalent electrical model and the parameters for the ultracapacitors were determined. It is possible to increase the total viable e-bike distance by 22% by using nanocarbon materials, such as nano-onions, for energy storage.

Published in:

Vehicle Power and Propulsion Conference (VPPC), 2012 IEEE

Date of Conference:

9-12 Oct. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.