By Topic

Evaluation of a System for High-Accuracy 3D Image-Based Registration of Endoscopic Video to C-Arm Cone-Beam CT for Image-Guided Skull Base Surgery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Mirota, D.J. ; Dept. of Comput. Sci., Johns Hopkins Univ., Baltimore, MD, USA ; Uneri, A. ; Schafer, S. ; Nithiananthan, S.
more authors

The safety of endoscopic skull base surgery can be enhanced by accurate navigation in preoperative computed tomography (CT) or, more recently, intraoperative cone-beam CT (CBCT). The ability to register real-time endoscopic video with CBCT offers an additional advantage by rendering information directly within the visual scene to account for intraoperative anatomical change. However, tracker localization error (~1-2 mm ) limits the accuracy with which video and tomographic images can be registered. This paper reports the first implementation of image-based video-CBCT registration, conducts a detailed quantitation of the dependence of registration accuracy on system parameters, and demonstrates improvement in registration accuracy achieved by the image-based approach. Performance was evaluated as a function of parameters intrinsic to the image-based approach, including system geometry, CBCT image quality, and computational runtime. Overall system performance was evaluated in a cadaver study simulating transsphenoidal skull base tumor excision. Results demonstrated significant improvement (p <; 0.001) in registration accuracy with a mean reprojection distance error of 1.28 mm for the image-based approach versus 1.82 mm for the conventional tracker-based method. Image-based registration was highly robust against CBCT image quality factors of noise and resolution, permitting integration with low-dose intraoperative CBCT.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:32 ,  Issue: 7 )