By Topic

Traction-Control-Oriented State Estimation for Motorcycles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Corno, M. ; Dipt. di Elettron. e Inf., Politec. di Milano, Milan, Italy ; Panzani, G. ; Savaresi, S.M.

This brief addresses two estimation problems relevant to traction control for motorcycles: longitudinal vehicle velocity estimation and wheelie (i.e., front wheel lifting off the ground during acceleration) detection. Two methods to estimate the vehicle body velocity are discussed and compared: a complementary filter and a Kalman filter. The Kalman filter reduces the noise affecting the estimate of the longitudinal vehicle velocity by an order of magnitude without introducing any phase lag. Furthermore, a wheelie detection algorithm is developed. The approach is based on the fault detection paradigm and detects wheelies in 70 ms. Both methods are computationally efficient and industrially viable. Track tests on an instrumented sport motorcycle are employed to illustrate and validate the methods.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:21 ,  Issue: 6 )