Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

Precision Position/Force Interaction Control of a Piezoelectric Multimorph Microgripper for Microassembly

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Qingsong Xu ; Dept. of Electromech. Eng., Univ. of Macau, Macao, China

Precision position and force control is a critical issue for automated microassembly systems to handle micro-objects delicately. This paper presents two new approaches to regulating both position and contact force of a piezoelectric multimorph microgripper dedicated to microassembly tasks. One of the advantages of the proposed approaches lies in that they are capable of controlling the position and contact force of a gripper arm simultaneously. The methodology is easy to implement since neither a state observer nor a hysteresis model of the system is required. The first approach is a position-based sliding mode impedance control which converts the target impedance into a desired position trajectory to be tracked, and the second one is established on the basis of a proportional-integral type of sliding function of the impedance measure error. Their tracking performances are guaranteed by two devised discrete-time sliding mode control algorithms, whose stabilities in the presence of model uncertainties and disturbances are proved in theory. The effectiveness of both schemes are validated by experimental investigations on a glass microbead gripping task. Results show that both approaches are capable of accomplishing promising interaction control accuracy.

Published in:

Automation Science and Engineering, IEEE Transactions on  (Volume:10 ,  Issue: 3 )