Cart (Loading....) | Create Account
Close category search window

Spatio-Temporal Iterative Source–Channel Decoding Aided Video Transmission

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yongkai Huo ; Sch. of Electron. & Comput. Sci., Univ. of Southampton, Southampton, UK ; Chuan Zhu ; Hanzo, L.

Low-complexity uncompressed video transmission meets the requirements of home networking and quality/delay-sensitive medical applications. Hence, it has attracted research attention in recent years. The redundancy inherent in the uncompressed video signals may be exploited by joint source-channel decoding to improve the attainable error resilience. Hence, in this treatise, we study the application of iterative joint source-channel decoding aided uncompressed video transmission, where correlation inherent in the video signals is modeled by a first-order Markov process. First, we propose a spatiotemporal joint source-channel decoding system using a recursive systematic convolutional codec, where both the horizontal and vertical intraframe correlations, as well as the interframe correlations, are exploited by the receiver, hence relying on 3-D information exchange. This scheme may be combined with arbitrary channel codecs. Then, we analyze the three-stage decoder's convergence behavior using 3-D extrinsic information transfer (EXIT) charts. Finally, we benchmark the attainable system performance against a couple of video communication systems, including our previously proposed 2-D scheme, where only intraframe correlations were exploited without invoking a channel codec. Our simulation results show that substantial Eb/N0 improvements are attainable by the proposed technique.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:62 ,  Issue: 4 )

Date of Publication:

May 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.