System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Common Nature of Learning Between Back-Propagation and Hopfield-Type Neural Networks for Generalized Matrix Inversion With Simplified Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yunong Zhang ; Sch. of Inf. Sci. & Technol., Sun Yat-sen Univ., Guangzhou, China ; Dongsheng Guo ; Zhan Li

In this paper, two simple-structure neural networks based on the error back-propagation (BP) algorithm (i.e., BP-type neural networks, BPNNs) are proposed, developed, and investigated for online generalized matrix inversion. Specifically, the BPNN-L and BPNN-R models are proposed and investigated for the left and right generalized matrix inversion, respectively. In addition, for the same problem-solving task, two discrete-time Hopfield-type neural networks (HNNs) are developed and investigated in this paper. Similar to the classification of the presented BPNN-L and BPNN-R models, the presented HNN-L and HNN-R models correspond to the left and right generalized matrix inversion, respectively. Comparing the BPNN weight-updating formula with the HNN state-transition equation for the specific (i.e., left or right) generalized matrix inversion, we show that such two derived learning-expressions turn out to be the same (in mathematics), although the BP and Hopfield-type neural networks are evidently different from each other a great deal, in terms of network architecture, physical meaning, and training patterns. Numerical results with different illustrative examples further demonstrate the efficacy of the presented BPNNs and HNNs for online generalized matrix inversion and, more importantly, their common natures of learning.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:24 ,  Issue: 4 )