By Topic

Towards Biomimetic Virtual Constraint Control of a Powered Prosthetic Leg

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gregg, R.D. ; Dept. of Mech. Eng., Northwestern Univ., Chicago, IL, USA ; Sensinger, J.W.

This brief presents a novel control strategy for a powered prosthetic ankle based on a biomimetic virtual constraint. We first derive a kinematic constraint for the “effective shape” of the human ankle-foot complex during locomotion. This shape characterizes ankle motion as a function of the center of pressure (COP)-the point on the foot sole where the resultant ground reaction force is imparted. Since the COP moves monotonically from heel to toe during steady walking, we adopt the COP as a mechanical representation of the gait cycle phase in an autonomous feedback controller. We show that our kinematic constraint can be enforced as a virtual constraint by an output linearizing controller that uses only feedback available to sensors onboard a prosthetic leg. Using simulations of a passive walking model with feet, we show that this novel controller enforces exactly the desired effective shape, whereas a standard impedance (i.e., proportional-derivative) controller cannot. This brief provides a single, biomimetic control law for the entire single-support period during robot-assisted locomotion.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:22 ,  Issue: 1 )