Cart (Loading....) | Create Account
Close category search window

Combining Surface Treatments With Shallow Slots to Improve the Spatial Resolution Performance of Continuous, Thick LYSO Detectors for PET

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kaul, M. ; Dept. of Phys., Univ. of Pennsylvania, Philadelphia, PA, USA ; Surti, S. ; Karp, J.S.

Positron emission tomography (PET) detectors based on continuous scintillation crystals can achieve very good performance and have a number of practical advantages compared to detectors based on a pixelated array of crystals. Our goal is to develop a thick continuous detector with high energy and spatial resolution, along with high γ -photon capture efficiency. We examine the performance of two crystal blocks: a 46 × 46 × 14 mm3 and a 48×48×25 mm3 block of LYSO (Lutetium Yttrium Orthosilicate). Using Maximum Likelihood (ML) positioning based upon the light response function (LRF) in the 14 mm thick crystal, we measure a spatial resolution of 3 mm in the central region of the crystal with degradation near the edges due to reflections off the crystal sides. We also show that we can match the spatial resolution achieved using a 14 mm thick crystal by using a 25 mm thick crystal with slots cut into the gamma entrance surface to narrow the LRF. We also find that we can improve the spatial resolution performance near the detector edges by reducing the reflectivity of the crystal sides, albeit with some loss in energy resolution.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:60 ,  Issue: 1 )

Date of Publication:

Feb. 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.