By Topic

Modeling Temporal Interactions with Interval Temporal Bayesian Networks for Complex Activity Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yongmian Zhang ; IT Res. Div., Konica Minolta Lab. U.S.A. Inc., San Mateo, CA, USA ; Yifan Zhang ; Swears, E. ; Larios, N.
more authors

Complex activities typically consist of multiple primitive events happening in parallel or sequentially over a period of time. Understanding such activities requires recognizing not only each individual event but, more importantly, capturing their spatiotemporal dependencies over different time intervals. Most of the current graphical model-based approaches have several limitations. First, time--sliced graphical models such as hidden Markov models (HMMs) and dynamic Bayesian networks are typically based on points of time and they hence can only capture three temporal relations: precedes, follows, and equals. Second, HMMs are probabilistic finite-state machines that grow exponentially as the number of parallel events increases. Third, other approaches such as syntactic and description-based methods, while rich in modeling temporal relationships, do not have the expressive power to capture uncertainties. To address these issues, we introduce the interval temporal Bayesian network (ITBN), a novel graphical model that combines the Bayesian Network with the interval algebra to explicitly model the temporal dependencies over time intervals. Advanced machine learning methods are introduced to learn the ITBN model structure and parameters. Experimental results show that by reasoning with spatiotemporal dependencies, the proposed model leads to a significantly improved performance when modeling and recognizing complex activities involving both parallel and sequential events.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:35 ,  Issue: 10 )