By Topic

Highly Nonrigid Object Tracking via Patch-Based Dynamic Appearance Modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Junseok Kwon ; Dept. of Electr. Eng. & Comput. Sci., Seoul Nat. Univ., Seoul, South Korea ; Kyoung Mu Lee

A novel tracking algorithm is proposed for targets with drastically changing geometric appearances over time. To track such objects, we develop a local patch-based appearance model and provide an efficient online updating scheme that adaptively changes the topology between patches. In the online update process, the robustness of each patch is determined by analyzing the likelihood landscape of the patch. Based on this robustness measure, the proposed method selects the best feature for each patch and modifies the patch by moving, deleting, or newly adding it over time. Moreover, a rough object segmentation result is integrated into the proposed appearance model to further enhance it. The proposed framework easily obtains segmentation results because the local patches in the model serve as good seeds for the semi-supervised segmentation task. To solve the complexity problem attributable to the large number of patches, the Basin Hopping (BH) sampling method is introduced into the tracking framework. The BH sampling method significantly reduces computational complexity with the help of a deterministic local optimizer. Thus, the proposed appearance model could utilize a sufficient number of patches. The experimental results show that the present approach could track objects with drastically changing geometric appearance accurately and robustly.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:35 ,  Issue: 10 )