By Topic

Modeling Natural Images Using Gated MRFs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

This paper describes a Markov Random Field for real-valued image modeling that has two sets of latent variables. One set is used to gate the interactions between all pairs of pixels, while the second set determines the mean intensities of each pixel. This is a powerful model with a conditional distribution over the input that is Gaussian, with both mean and covariance determined by the configuration of latent variables, which is unlike previous models that were restricted to using Gaussians with either a fixed mean or a diagonal covariance matrix. Thanks to the increased flexibility, this gated MRF can generate more realistic samples after training on an unconstrained distribution of high-resolution natural images. Furthermore, the latent variables of the model can be inferred efficiently and can be used as very effective descriptors in recognition tasks. Both generation and discrimination drastically improve as layers of binary latent variables are added to the model, yielding a hierarchical model called a Deep Belief Network.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:35 ,  Issue: 9 )