By Topic

Active Learning of Constraints for Semi-Supervised Clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sicheng Xiong ; Oregon State Univ., Corvallis, OR, USA ; Javad Azimi ; Xiaoli Z. Fern

Semi-supervised clustering aims to improve clustering performance by considering user supervision in the form of pairwise constraints. In this paper, we study the active learning problem of selecting pairwise must-link and cannot-link constraints for semi-supervised clustering. We consider active learning in an iterative manner where in each iteration queries are selected based on the current clustering solution and the existing constraint set. We apply a general framework that builds on the concept of neighborhood, where neighborhoods contain "labeled examples" of different clusters according to the pairwise constraints. Our active learning method expands the neighborhoods by selecting informative points and querying their relationship with the neighborhoods. Under this framework, we build on the classic uncertainty-based principle and present a novel approach for computing the uncertainty associated with each data point. We further introduce a selection criterion that trades off the amount of uncertainty of each data point with the expected number of queries (the cost) required to resolve this uncertainty. This allows us to select queries that have the highest information rate. We evaluate the proposed method on the benchmark data sets and the results demonstrate consistent and substantial improvements over the current state of the art.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:26 ,  Issue: 1 )