Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

HED: A Computational Model of Affective Adaptation and Emotion Dynamics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Steephen, J.E. ; Centre for Neural & Cognitive Sci., Univ. of Hyderabad, Hyderabad, India

Affective adaptation is the process of weakening of the affective response of a constant or repeated affective stimulus by psychological processes. A modified exponentially weighted average computational model of affective adaptation, which predicts its time course and the resulting affective dynamics, is presented. In addition to capturing the primary features of affective adaptation, it is shown that the model is consistent with several previously reported characteristics of affective dynamics. For instance, the model shows that elicited emotion is determined by the position, displacement, velocity, and acceleration of the stimulus. It also demonstrates that affective after-reaction correlates positively with stimulus intensity and duration and that the duration-of-current-ownership, duration-of-prior-ownership, and time-elapsed-since-loss effects can be explained by it. The model exhibits the region-β paradox that refers to the observation that stronger emotions sometimes abate faster than the weaker ones. The model also predicts that the proposed mechanisms underlying the paradox may have other effects on affective dynamics as well. Besides offering an explanation for the contradicting reports on emotion intensity-duration relationship, it is also proposed that adaptation processes activate quickly but deactivate slowly. Potential applications in affective computing as well as some new lines of empirical research are discussed.

Published in:

Affective Computing, IEEE Transactions on  (Volume:4 ,  Issue: 2 )