By Topic

Medical image retrieval system for diagnosis of brain tumor based on classification and content similarity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Megha. P. Arakeri ; Department of Information Technology, National Institute of Technology Karnataka (NITK), Surathkal, Mangalore, India-575025 ; G. Ram Mohana Reddy

Accurate diagnosis is important for successful treatment of brain tumor. Content based medical image retrieval (CBMIR) can assist the radiologist in diagnosis of brain tumor by retrieving similar images from medical image database. Magnetic resonance imaging (MRI) is the most commonly used modality for imaging brain tumors. During image acquisition there can be misalignment of magnetic resonance (MR) image slices due to movement of patient and also the low level features extracted from MR image may not correspond with the high level semantics of brain tumor. These problems create a semantic gap and limit the application of automated image analysis tools on MR images. In order to address these problems, this paper proposes a two-level hierarchical CBMIR system which first classifies the query image of brain tumor as benign or malign and then searches for the most similar images within the identified class. Separate set of rotation invariant shape and texture features are used to discriminate between brain tumors at each level. Experiments have been conducted on medical image database consisting of 820 brain MR images. The proposed approach gives promising retrieval results by improving precision, recall and retrieval time.

Published in:

2012 Annual IEEE India Conference (INDICON)

Date of Conference:

7-9 Dec. 2012