By Topic

Oxide thickness effect on quantum capacitance in single-gate MOSFET and CNTFET devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sinha, S.K. ; Dept. of Electr. Eng., Nat. Inst. of Technol., Silchar, Silchar, India ; Chaudhury, S.

Carbon nanotube based FET devices are getting more and more importance today because of their high channel mobility and improved gate capacitance versus voltage characteristics. In this paper we compare and analyse the effect of gate capacitance on varying oxide thickness for silicon MOSTFET and CNTFET. It is seen that in nanometre regime quantum capacitance plays the major role in deciding the gate capacitance of a CNTFET and we find a favourable characteristics of decreasing gate capacitance with the decrease in the oxide thickness which is not possible to get in silicon MOSFET.

Published in:

India Conference (INDICON), 2012 Annual IEEE

Date of Conference:

7-9 Dec. 2012