Cart (Loading....) | Create Account
Close category search window

Comparison of generalized profile function models based on linear regression and neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Radonja, P. ; Div. of Forest Manage. & Police, Inst. of Forestry, Belgrade, Serbia

In this paper, the generalized profile function models, GPFMs, based on linear regression and neural networks, are compared. GPFM provides an approximation of individual models (models of individual stem profile) facility using only two basic measurements. GPFM based on neural network is obtained as the average of all available normalized individual models. It is shown that the application of neural networks provides a generalized model with good performance.

Published in:

Neural Network Applications in Electrical Engineering (NEUREL), 2012 11th Symposium on

Date of Conference:

20-22 Sept. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.