By Topic

Short-term electricity demand forecasting method for smart meters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
K. S. K. Weranga ; Department of Electrical Engineering, University of Moratuwa, Katubedda 10400, Sri lanka ; D. P. Chandima ; S. R. Munasinghe ; S. P. Kumarawadu
more authors

The short-term electricity demand forecasting has become one of the major research area in power system engineering. By combining the smart metering to the short-term demand forecasting techniques, new features can be added to save on demand and electricity bill. This paper illustrates the methodology used to forecast electricity demand over short period of time which can be used with smart meters. Polynomial fitting with interpolation is used to forecast the demand by taking the apparent power sample points from smart meters. The outcome of this work will be beneficial to the residential or industrial electricity consumers to control the demand side loads. It will help the industrial consumers to save on maximum demand charge with the introduction of warning message or residential consumers to reduce their electricity bill by cutting down non-essential loads in peak hours.

Published in:

2012 IEEE 6th International Conference on Information and Automation for Sustainability

Date of Conference:

27-29 Sept. 2012