Cart (Loading....) | Create Account
Close category search window
 

Balancing Privacy and Utility in Cross-Company Defect Prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Peters, F. ; Lane Dept. of Comput. Sci. & Electr. Eng., West Virginia Univ., Morgantown, WV, USA ; Menzies, T. ; Gong, L. ; Zhang, H.

Background: Cross-company defect prediction (CCDP) is a field of study where an organization lacking enough local data can use data from other organizations for building defect predictors. To support CCDP, data must be shared. Such shared data must be privatized, but that privatization could severely damage the utility of the data. Aim: To enable effective defect prediction from shared data while preserving privacy. Method: We explore privatization algorithms that maintain class boundaries in a dataset. CLIFF is an instance pruner that deletes irrelevant examples. MORPH is a data mutator that moves the data a random distance, taking care not to cross class boundaries. CLIFF+MORPH are tested in a CCDP study among 10 defect datasets from the PROMISE data repository. Results: We find: 1) The CLIFFed+MORPHed algorithms provide more privacy than the state-of-the-art privacy algorithms; 2) in terms of utility measured by defect prediction, we find that CLIFF+MORPH performs significantly better. Conclusions: For the OO defect data studied here, data can be privatized and shared without a significant degradation in utility. To the best of our knowledge, this is the first published result where privatization does not compromise defect prediction.

Published in:

Software Engineering, IEEE Transactions on  (Volume:39 ,  Issue: 8 )

Date of Publication:

Aug. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.