Cart (Loading....) | Create Account
Close category search window
 

Parallel connection of single-switch three-phase power-factor correction converters for interleaved switching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Robinson, F.V.P. ; Sch. of Electron. & Electr. Eng., Bath Univ., UK ; Chunkag, V.

A circuit for the parallel connection of multiple high-frequency three-phase power-factor-correction converters is proposed which enables their input and output current ripple to be interleaved. Such interleaved operation substantially improves the composite power factor, line-current ripple and output-voltage ripple. The improvement is investigated by developing solutions to circuit state equations which allow the high-frequency content of the line current, as well as the low-order line-frequency harmonics, to be computed. Conclusions drawn from the computed results are verified experimentally using a 1 kW, two-stage, interleaved converter

Published in:

Electric Power Applications, IEE Proceedings -  (Volume:144 ,  Issue: 6 )

Date of Publication:

Nov 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.