Cart (Loading....) | Create Account
Close category search window
 

A low power millimetre-wave VCO in 0.18 µm SiGe BiCMOS technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Qiong Zou ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Kaixue Ma ; Wanxin Ye ; Kiat Seng Yeo

A 36 GHz low power voltage controlled oscillator (VCO) is proposed and designed in 0.18 μm SiGe BiCMOS process. The VCO core part adopts a triple coupled transformer to provide feedbacks and to decouple the base voltage from the collector of the bipolar transistors, such that the voltage swing and phase noise can be improved. Besides, a transformer-based buffer is used to reduce the total power consumption of the design and provide matching. From the simulation results, the proposed VCO achieves low phase noise from -95 to -102.2dBc/Hz at 1MHz offset from the oscillation frequency while consumes only 5.76 mW DC power for the whole chip.

Published in:

Circuits and Systems (APCCAS), 2012 IEEE Asia Pacific Conference on

Date of Conference:

2-5 Dec. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.