By Topic

A 9.87 nW 1 kS/s 8.7 ENOB SAR ADC for implantable epileptic seizure detection microsystems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Anh Tuan Do ; Virtus IC Design Centre of Excellent, School of EEE, Nanyang Technological University, Singapore 639798 ; Chun Kit Lam ; Yung Sern Tan ; Kiat Seng Yeo
more authors

This paper presents an ultra low-power SAR ADC in 0.18 μm CMOS technology for epileptic seizure detection applications. The ADC is powered by a single supply voltage of both analog and digital circuits to avoid using the level-shifters. A latched comparator is used to quickly generate the comparison results while consuming no DC current. Split-cap architecture with an attenuation cap is used to minimize area and to further reduce the power consumption. A smaller-than-unit capacitor is used at the end of the least significant bit array to mitigate the negative impact of the parasitic components on the linearity of the capacitors array. As a result, both DNL/INL and SNDR of the ADC is improved. Our post-layout simulation shows that at 1 V supply, 1 kS/s the proposed SAR archives 8.7 ENOB while consuming only 9.87 nW. This yields an FOM of 23.7 fJ/conversion-step. Its leakage power consumption is 1.46 nW.

Published in:

Circuits and Systems (APCCAS), 2012 IEEE Asia Pacific Conference on

Date of Conference:

2-5 Dec. 2012