By Topic

Cooperative actuator fault accommodation in formation flight of unmanned vehicles using absolute measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Azizi, S.M. ; Dept. of Electr. & Comput. Eng., Concordia Univ., Montréal, QC, Canada ; Khorasani, K.

In this study, the problem of cooperative fault accommodation in formation flight of unmanned vehicles represented by linear time-invariant models that are subject to loss-of-effectiveness actuator faults is investigated through a hierarchical framework. Three hierarchical levels are envisaged, namely a low-level fault recovery (LLFR), a formation-level fault recovery and a high-level supervisor. In the LLFR module, a recovery controller is designed by using an estimate of the actuator fault. A performance monitoring module is then introduced at the high-level to identify a `partially low-level recovered` vehicle because of inaccuracy in the fault severity estimate that results in violating the `error specification` of the formation mission. The high-level supervisor then activates the formation-level fault recovery module to compensate for the resulting performance degradations of the partially low-level (LL) recovered vehicle at the expense of other healthy vehicles. The fault is accommodated by reconfiguring the formation structure through the novel notion of the weighted absolute measurement formation digraph, activating a robust controller for the partially LL recovered vehicle, and imposing a constraint on the desired input signals. Numerical simulations for a formation flight of five satellites in the planetary orbital environment are presented to confirm the validity and effectiveness of the proposed analytical work.

Published in:

Control Theory & Applications, IET  (Volume:6 ,  Issue: 18 )